INDICATIONS FOR TESTING
Fatigue, weakness, pallor, dizziness, fainting

ORDER
- CBC with Platelet Count and Automated Differential (including RBC indices and morphology on manual differential)
- Reticulocytes, Percent & Number

Anemia present on CBC (males Hgb <13g/dL, females Hgb <12g/dL)
AND
Corrected reticulocyte index ≥2.5

- No
- Classify by RBC indices
 - Normocytic, normochromic (normal MCV, MCHC) (suggests hypoproliferation)
 - Bone marrow disorder (eg, infiltration, aplasia)
 - Inflammation
 - Autoimmune disease
 - Chronic renal disease
 - Critical illness
 - Chronic endocrine disorders
 - Aplastic anemia, pure red cell aplasia
 - Microcytic, hypochromic (low MCV, MCHC) (suggests maturation defects)
 - Iron deficiency
 - Chronic disease
 - Thalassemia – see Hemoglobinopathies topic
 - Sideroblastic anemia
 - Lead toxicity
 - Macrocytic (high MCV) (suggests maturation defects)
 - B₁₂ deficiency, (rarely folate deficiency) – see Megaloblastic Anemia Testing Algorithm
 - Drugs
 - Excessive alcohol use
 - Hypothyroidism
 - Myelodysplasia – see Myelodysplastic Syndromes Consult topic

- Yes
 - ORDER
 - Peripheral smear
 - Fragmented cells on peripheral smear
 - Yes (suggests hemolysis)
 - ORDER
 - Vitamin B₁₂ & Folate
 - Acute blood loss
 - Consider other workup based on smear findings (eg, bone marrow biopsy)
 - See the following Consult topics based on presentation
 - Hemolytic Anemias
 - Thrombotic Microangiopathies
 - HELLP Syndrome
 - Cold Agglutinin Disease
 - Paroxysmal Nocturnal Hemoglobinuria
 - Unstable Hemoglobinopathies
 - Disseminated Intravascular Cogulation

Abbreviations and Formula

\[
\text{MCV} = \text{mean cell volume} \\
\text{MCHC} = \text{mean cell hemoglobin concentration} \\
\text{TIBC} = \text{total iron binding capacity}
\]

Reticulocyte correction for anemia:

\[
\text{ReticCount}\% = \frac{\text{Hgb}}{\text{Htc}} \times \frac{1}{\text{Maturation time correction}}
\]

(Use 2% for most patients)